105 research outputs found

    A Novel Progressive Multi-label Classifier for Classincremental Data

    Full text link
    In this paper, a progressive learning algorithm for multi-label classification to learn new labels while retaining the knowledge of previous labels is designed. New output neurons corresponding to new labels are added and the neural network connections and parameters are automatically restructured as if the label has been introduced from the beginning. This work is the first of the kind in multi-label classifier for class-incremental learning. It is useful for real-world applications such as robotics where streaming data are available and the number of labels is often unknown. Based on the Extreme Learning Machine framework, a novel universal classifier with plug and play capabilities for progressive multi-label classification is developed. Experimental results on various benchmark synthetic and real datasets validate the efficiency and effectiveness of our proposed algorithm.Comment: 5 pages, 3 figures, 4 table

    Development of Fuzzy Neural Networks: Current Framework and Trends

    Get PDF

    Theoretical Issues in Modeling of Large-Scale Wireless Sensor Networks

    Get PDF

    Face Recognition Under Varying Illumination

    Get PDF
    This study is a result of a successful joint-venture with my adviser Prof. Dr. Muhittin Gökmen. I am thankful to him for his continuous assistance on preparing this project. Special thanks to the assistants of the Computer Vision Laboratory for their steady support and help in many topics related with the project

    Reinforcement Learning in Generating Fuzzy Systems

    Get PDF

    Population structure-learned classifier for high-dimension low-sample-size class-imbalanced problem

    Full text link
    The Classification on high-dimension low-sample-size data (HDLSS) is a challenging problem and it is common to have class-imbalanced data in most application fields. We term this as Imbalanced HDLSS (IHDLSS). Recent theoretical results reveal that the classification criterion and tolerance similarity are crucial to HDLSS, which emphasizes the maximization of within-class variance on the premise of class separability. Based on this idea, a novel linear binary classifier, termed Population Structure-learned Classifier (PSC), is proposed. The proposed PSC can obtain better generalization performance on IHDLSS by maximizing the sum of inter-class scatter matrix and intra-class scatter matrix on the premise of class separability and assigning different intercept values to majority and minority classes. The salient features of the proposed approach are: (1) It works well on IHDLSS; (2) The inverse of high dimensional matrix can be solved in low dimensional space; (3) It is self-adaptive in determining the intercept term for each class; (4) It has the same computational complexity as the SVM. A series of evaluations are conducted on one simulated data set and eight real-world benchmark data sets on IHDLSS on gene analysis. Experimental results demonstrate that the PSC is superior to the state-of-art methods in IHDLSS.Comment: 41 pages,10 Figures,10 Table

    The classification for High-dimension low-sample size data

    Full text link
    Huge amount of applications in various fields, such as gene expression analysis or computer vision, undergo data sets with high-dimensional low-sample-size (HDLSS), which has putted forward great challenges for standard statistical and modern machine learning methods. In this paper, we propose a novel classification criterion on HDLSS, tolerance similarity, which emphasizes the maximization of within-class variance on the premise of class separability. According to this criterion, a novel linear binary classifier is designed, denoted by No-separated Data Maximum Dispersion classifier (NPDMD). The objective of NPDMD is to find a projecting direction w in which all of training samples scatter in as large an interval as possible. NPDMD has several characteristics compared to the state-of-the-art classification methods. First, it works well on HDLSS. Second, it combines the sample statistical information and local structural information (supporting vectors) into the objective function to find the solution of projecting direction in the whole feature spaces. Third, it solves the inverse of high dimensional matrix in low dimensional space. Fourth, it is relatively simple to be implemented based on Quadratic Programming. Fifth, it is robust to the model specification for various real applications. The theoretical properties of NPDMD are deduced. We conduct a series of evaluations on one simulated and six real-world benchmark data sets, including face classification and mRNA classification. NPDMD outperforms those widely used approaches in most cases, or at least obtains comparable results.Comment: arXiv admin note: text overlap with arXiv:1901.0137
    • …
    corecore